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Abstract Coupled equilibria play important roles in

controlling information flow in biochemical systems,

including allosteric molecules and multidomain proteins. In

the simplest case, two equilibria are coupled to produce

four interconverting states. In this study, we assessed the

feasibility of determining the degree of coupling between

two equilibria in a four-state system via relaxation dis-

persion measurements. A major bottleneck in this effort is

the lack of efficient approaches to data analysis. To this

end, we designed a strategy to efficiently evaluate the

smoothness of the target function surface (TFS). Using this

approach, we found that the TFS is very rough when fitting

benchmark CPMG data to all adjustable variables of the

four-state equilibria. After constraining a portion of the

adjustable variables, which can often be achieved through

independent biochemical manipulation of the system, the

smoothness of TFS improves dramatically, although it is

still insufficient to pinpoint the solution. The four-state

equilibria can be finally solved with further incorporation

of independent chemical shift information that is readily

available. We also used Monte Carlo simulations to eval-

uate how well each adjustable parameter can be determined

in a large kinetic and thermodynamic parameter space and

how much improvement can be achieved in defining the

parameters through additional measurements. The results

show that in favorable conditions the combination of

relaxation dispersion and biochemical manipulation allow

the four-state equilibrium to be parameterized, and thus

coupling strength between two processes to be determined.
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Introduction

Allostery is a crucial mode of regulation found in most, if

not all, biological pathways (Gunasekaran et al. 2004;

Kalodimos 2011; Tzeng and Kalodimos 2011). It refers to

the responsiveness of protein activities to perturbations at

remote sites on the same molecule or complex. For

example, catalytic activities of enzymes or ligand binding

activities of receptors are modulated by effector molecules

upon association at distal sites (Buck et al. 2004; Fenton

2008; Goodey and Benkovic 2008; Gunasekaran et al.

2004; Kalodimos 2011; Leung and Rosen 2005; Monod

et al. 1965; Tzeng and Kalodimos 2011). The magnitude of

activity change upon effector binding is defined as allo-

steric coupling strength (Monod et al. 1965). Non-unitary

coupling strengths indicate the presence of allostery. It is

pivotal to determine allosteric coupling strengths in order

to quantitatively understand the role of allostery in differ-

ent biological pathways (Buck et al. 2004; Leung and

Rosen 2005; Prehoda et al. 2000; Yu et al. 2010), to guide

allosteric drug discovery (Acuner Ozbabacan et al. 2010;

Kar et al. 2010; Peterson et al. 2004), and to assist design

and engineering of new bio-inspired systems (Dueber et al.

2003; Leung et al. 2008; Lim 2002; Stratton and Loh 2011;

Vallee-Belisle and Plaxco 2010; Wright et al. 2007).
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In a simplified yet representative view, allosteric pro-

teins in their apo form possess intrinsic two-state equilibria

(Fig. 1a), often between a low activity and a high activity

state (Kern and Zuiderweg 2003; Monod et al. 1965). In the

presence of effectors, allosteric systems transition to a four-

state equilibrium representation (Bosco et al. 2010; Li et al.

2008) (Fig. 1b). In the ideality of full saturation by effec-

tor, the systems collapse into the right edge of the four-

state thermodynamic box (Fig. 1c)—i.e., a new two-state

equilibrium with different populations of species than in

the free state. This model is consistent with data indicating

that even in the absence of effectors, many allosteric pro-

teins appreciably sample the active state, and that effectors

shift the equilibrium from inactive to active (Kern et al.

2005; Leung and Rosen 2005; Loria et al. 2008). Of course

inhibitory effectors can also shift systems from active to

inactive via coupled equilibria favoring the inactive state

(Yu et al. 2010). In this thermodynamic framework, the

allosteric and binding equilibria are coupled, by a magni-

tude defined as the ratio of the equilibrium constants for the

two-state equilibria of the apo-protein (Fig. 1a) and of the

effector-saturated protein (Fig. 1c). Alternatively, coupling

magnitude is the ratio of binding equilibrium constants of

the effector for the inactive and active states of the protein

(Leung and Rosen 2005; Monod et al. 1965).

A thermodynamically analogous situation can also exist

in unimolecular systems. For example, in a recent study,

we observed 2 ls-ms timescale dynamic processes coex-

isting in the autoinhibited Dbl homology domain (DH) of

the Rho/Rac1 guanine nucleotide exchange factor, Vav1,

(This protein is referred to as helix-DH hereafter) (Li et al.

2008). One process is intrinsic to the DH domain, analo-

gous to the intrinsic allosteric equilibrium depicted in

Fig. 1a (Fig. 1d). The other process involves binding of an

inhibitory helix, which is N-terminally adjacent to the DH

domain, to the DH active site. The inhibitory helix is

thermodynamically analogous to the allosteric effector, but

acts in cis rather than in trans. Therefore the second process

is analogous to the effector binding process in Fig. 1b

(Fig. 1e). The thermodynamics and kinetics of the intrinsic

process in the DH domain change upon perturbations to the

helix-DH binding process, suggesting that the two equi-

libria are allosterically coupled (Li et al. 2008). A four-

state model is required to depict the energetic landscape of

the helix-DH protein (Fig. 1e).

NMR has proven to be a powerful means of quantita-

tively characterizing regulatory equilibria in macromole-

cules. The ls-ms timescales of transitions between states

and relatively large populations ([0.5%) of high-energy

states often seen in proteins produce significant effects on

transverse relaxation. These can be analyzed by Carr-Pur-

cell-Meiboom-Gill (CPMG)-based measurements (Carr and

Purcell 1954; Meiboom and Gill 1958) of relaxation dis-

persion to yield quantitative information on thermodynamic

and kinetic aspects of allostery (Baldwin and Kay 2009;

Kern and Zuiderweg 2003; Mittermaier and Kay 2009;

Palmer et al. 2001). Such measurements are now routinely

used to study two-state equilibria involving transitions on

ls-ms time scales (Baldwin and Kay 2009; Kovrigin et al.

2006; Mittermaier and Kay 2009; Palmer et al. 2001).

However, in complex systems involving two coupled pro-

cesses, the magnitude of coupling requires analysis of the

four-state system directly (Fig. 1b, e). In recent studies,

relaxation dispersion measurements have been used to

characterize three-state systems (Eisenmesser et al. 2002;

Grey et al. 2003; Korzhnev et al. 2004, 2005, 2006; Neu-

decker et al. 2006; Sugase et al. 2007; Tolkatchev et al.

2003). Solving three-state equilibria using CPMG data

requires either relaxation dispersion measurements of a
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Fig. 1 Models of coupled equilibria. A minimal representation of

allosteric systems requires two structural elements: a protein

containing an allosteric site (in blue) and an effector (in red). In the

absence of effector, allosteric proteins display intrinsic conforma-

tional equilibria between at least two states (a, d, f): T and R. In this

framework, allostery arises from energetic coupling between the

intrinsic and effector-binding equilibria that can be represented by a

four-state equilibrium (b, e, g) between T, R, T-bound (TB), and

R-bound (RB). In bimolecular systems (upper panels), coupling

occurs in partially saturated conditions (b) and is overridden in the

apo (a) and fully saturated cases (c). In unimolecular multi-domain

systems, truncation of the effector module can be used to isolate the

conformational equilibrium intrinsic to the allosteric module (d). Both

bi- and uni-molecular systems can be similarly parameterized using a

set of population (p) and kinetic constant (k) variables (f, g)
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large number of different coherences (Korzhnev et al. 2005;

Neudecker et al. 2006), or orthogonal perturbations, such as

temperature variations (Grey et al. 2003; Korzhnev et al.

2004, 2006) and ligand titrations (Eisenmesser et al. 2002;

Sugase et al. 2007; Tolkatchev et al. 2003). However,

solving four-state equilibria using relaxation dispersion

remains largely uncharted territory.

In this study, we use computer simulation to assess the

feasibility of parameterizing four-state equilibria using

relaxation dispersion measurements. The basic procedure is

to (1) synthesize exact CPMG data using input parameter

sets under a four-state model, (2) add random noise to the

exact data, (3) fit noise-incorporated data to the same

model and extract the input parameters as the adjustable

variables, and (4) evaluate agreement between the fitted

and input values. Due to the large number of adjustable

variables, and correlations between certain parameters, the

target function for the curve fitting of a four-state model is

likely to contain multiple local minima. Thus, we designed

a strategy called target function minima mapping from

grids of reduced dimension, coupled with logarithms of

average normalized distance plotting (M2GRED/LAND) to

evaluate the smoothness of the target function surface

(TFS). Indeed, M2GRED/LAND results indicate that local

minima are frequently found in the TFS of all adjustable

variables of the four-state equilibria. The smoothness of

TFS improves dramatically with constraints on a portion of

the variables, which can be determined by studying

relaxation dispersion of a two-state system that represents

one arm of the four-state box (Fig. 1a, d). However, it is

still insufficient to pinpoint the solution with these data

alone. After further incorporating chemical shift informa-

tion that is readily available during experiments but gen-

erally not used in curve fitting, the four-state equilibria can

be finally solved. To guide actual experiments, we evalu-

ated how much improvement different additional mea-

surements can bring about using Monte Carlo simulation.

We also evaluated how well each adjustable parameter can

be determined in a large kinetic and thermodynamic

parameter space to assess in which parameter space allo-

steric coupling strength can be reasonably quantified.

Materials and methods

Theoretical background

The evolution of single-quantum coherence in the presence

of conformational equilibria under a CPMG pulse train can

be treated according to (1):

MðtÞ ¼ ½expðA�dÞ expðAþdÞ expðAþdÞ expðA�dÞ�nMð0Þ;
ð1Þ

where t = 4nd with 2n the number of spin-echo trains

within the constant time period, t; M(t) is the magnetiza-

tion vector after the constant relaxation time period; M(0)

is the initial magnetization vector; A± are the evolution of

magnetization matrix before (A-) and after (A?) a 180�
pulse in a spin-echo train (Korzhnev et al. 2004). For a spin

with four-state exchange as in Fig. 1g, M(t) and M(0) are

[MTB(t), MT(t), MR(t), MRB(t)]T, and (pTB, pT, pR, pRB)T,

respectively. The corresponding evolution matrices, A±,

are:

in which k1–k8 are defined in Fig. 1g; i is the imaginary

unit; XTB, XT, XR, and XRB represent chemical shifts of a

spin at states TB, T, R, and RB, respectively; and R0
2 is the

intrinsic transverse relaxation rate constant in the absence

of exchange (R0
2 at all four states are assumed to be iden-

tical). Due to the thermodynamic constraints, knowledge of

any 7 out of the 12 kinetic and thermodynamic parameters

(four populations and eight rates) is sufficient to fully

determine the remaining ones. By convention, kex repre-

sents the sum of forward and reverse rate constants:

kex1 = k1 ? k2, kex2 = k3 ? k4, kex3 = k5 ? k6, and

kex4 = k7 ? k8. Therefore, we use four kinetic (kex1–kex4)

and three population (pT, pTB, and pRB) parameters as the

adjustable variables for the four-state model.

The parameter sets

We extensively studied the ls-ms timescale dynamics of

the helix-DH protein using CPMG-based relaxation dis-

persion measurements, and extracted the kinetic and ther-

modynamic parameters and chemical shifts of some spins

A� ¼
�k4 � k5 � R0

2 � i� XTB k3 0 k6

k4 �k2 � k3 � R0
2 � i� XT k1 0

0 k2 �k1 � k8 � R0
2 � i� XR k7

k5 0 k8 �k6 � k7 � R0
2 � i� XRB

2
664

3
775;

ð2Þ
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in the four states (Li et al. in preparation). For the current

study, we constructed a large number of parameter sets

based on the kinetic, thermodynamic, and methyl 13C

chemical shift information of helix-DH (Fig. 2). This study

focuses on conformational equilibria in intermediate-to-

fast exchange regimes, in which kex values are much larger

than the intrinsic transverse relaxation rate constants R0
2

� �
and the differences in R0

2 of the different states can be

neglected (Grey et al. 2003). Hence the R0
2 values of all 13C

resonances are assumed to be identical, 20.0 s-1 (Fig. 2a).

We note that this assumption is unlikely to hold in the

analysis of 15N relaxation dispersion data due to the sig-

nificant chemical shift anisotropy for nitrogen nuclei.

Approximate 13C chemical shifts of eight methyl spins with

dispersion amplitude (on 600-MHz instrument) between 10

and 40 s-1 were selected as the chemical shift parameter

set (Fig. 2b). Each of the four kinetic parameters takes

either e6.5 (&665) s-1 or e7.5 (&1,808) s-1 (Fig. 2c). For

the population parameters, the sum of pTB and pRB is 0.9

and that of pT and pR is 0.1, mimicking the finding that the

open-closed equilibrium of the inhibitory helix is about

0.1:0.9 in helix-DH (Li et al. 2008) (Fig. 2d, e); three

combinations of (pTB, pRB) are considered, in which the

state TB is always the major state (pTB C 0.8) (Fig. 2d);

and thirteen combinations of (pT, pR), ranging from

pT � pR to pT � pR, are considered (Fig. 2e). In total,

there are 624 (= 2 9 2 9 2 9 2 9 3 9 13) parameter sets

(Fig. 2a). The parameter set that most closely approximates

the fitted variables in our analysis of helix-DH at 5�C was

selected as the benchmark, in which (pTB, pT, pR,

pRB) = (0.85, 0.07, 0.03, 0.05), and (kex1, kex2, kex3,

kex4) = e(7.5, 6.5, 6.5, 6.5) s-1. We note that in this system the
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10 11 12 13
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157-195 7.5   6.5      6.5       6.5
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I 0.9 0.0 0.0 0.6
II 0.3 0.0 0.0 0.7
III 0.45 0.0 0.0       -0.15
IV 0.5 0.0 0.0 0.6
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Fig. 2 Parameter sets. a There

are 624 parameter sets, in which

(1) all R0
2s are 20.0 s-1; (2) one

set of chemical shifts from eight

spins is considered (b); (3) kex

values are e6.5 (&665) or e7.5

(&1,808) s-1 (c); (4) three sets

of (pTB, pRB) are considered:

(0.88, 0.02) (red), (0.85, 0.05)

(green), and (0.80, 0.10) (blue)

(d); and (5) 13 sets of (pT, pR)

are considered (e)
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effector is an allosteric inhibitor such that its binding shifts

the system more towards the T state—i.e., pTB/pRB [ pT/

pR [ 1.0. The benchmark parameter set was used to

demonstrate the methodological innovations that allow us

to solve the four-state equilibria of helix-DH. Monte Carlo

simulation was used to evaluate the feasibility of solving

four-state equilibria in all 624 parameter sets.

Generation of CPMG data

Synthetic CPMG relaxation dispersion data of four-state

equilibria for a given parameter set were obtained based on

the major species, TB, using:

R2;eff ¼ �
1

t
� ln

MTBðtÞ
MTBð0Þ

; ð3Þ

where t is the constant relaxation time period and MTB(t)

and MTB(0) are the first elements of M(t) and M(0) for

four-state equilibria, respectively. Noise-free 600- and 800-

MHz single-quantum methyl 13C CPMG data were gener-

ated using a program written in C modified from one kindly

provided by Drs. Dmitry M. Korzhnev and Lewis E. Kay

(University of Toronto). The resulting dispersion profiles

R2,eff(mCPMG) per spin per field include 20 data points with

mCPMG varying from 50 to 1,000 Hz every 50 Hz. Each

noise-free R2,eff data point was incorporated with a noise

term randomly drawn from a Gaussian distribution of mean

zero and standard deviation of 4% 9 R2,eff to give rise to

4% noise-incorporated data. Given the availability of

cryogenic probes, perdeuturation labeling, and sensitivity-

enhanced NMR techniques, 4% is a practical noise level

for many systems (Ishima and Torchia 2005; Lundstrom

et al. 2007; Neudecker et al. 2006).

Curve fitting of synthetic CPMG data

The C-code provided by Drs. Korzhnev and Kay was also

modified for global fitting of synthesized data using

Levenberg–Marquardt nonlinear least-square minimization

of the target function value (TFV):

TFVðfÞ ¼
X Rclc

2;effðfÞ � R2;eff

� �2

4%� R2;eff

� �2
; ð4Þ

where R2,eff are data points to be fitted, Rclc
2;effðfÞ is calcu-

lated R2,eff given a set of adjustable variables, f represents

the set of adjustable variables, and the summation is over

all relaxation data points (Ishima and Torchia 2005; Kor-

zhnev et al. 2004).

In curve fitting without constraints on parameters of the T-

R edge, a Levenberg–Marquardt search was conducted from

multiple initial points. The initial points were selected in

order to cover the intermediate-to-fast exchange regime for

kinetic parameters and CPMG sensitive ranges for popula-

tions. These initial points were defined as follows: (1) ln(kex)

values varied from 5.0 to 8.0 with a step size of 0.2; pTB

varied from 0.5 to 0.76 with a step size of 0.02; (2) pRB was

constrained by pTB, such that pRB = 0.8 - pTB; (3) all other

adjustable parameters had only a single value: pT = 0.14;

pR = 0.06; R0
2s were set at their input values; XRs of all spins

were equal to their input values; XTB and XRB of spins I–IV

were set to be equal, and their values were arbitrarily set

according to the relaxation dispersion amplitude; XTB of

spins V–VIII were equal to the corresponding XT; XRB of

spins V–VIII were equal to the corresponding XR. In the

process of curve fitting with constraints on parameters of the

T-R edge, we did a Levenberg–Marquardt search from

similar multiple initial points as above except that XRs, kex1

pT, and pR were no longer adjustable variables.

Monte Carlo simulation

Monte Carlo (MC) simulation was used to assess how well

each adjustable parameter can be determined in the dif-

ferent parameter spaces (sections ‘‘Solution determination

using chemical shift constraints’’ and ‘‘MC simulation on

all parameter sets’’) or with different amounts of mea-

surements (section ‘‘Improvement in fitted parameters by

additional measurements’’). In each simulation, 4% ran-

dom noise was added to synthesized, noise-free relaxation

dispersion data. The noise-incorporated data set was sub-

ject to Levenberg–Marquardt optimization from input

values. The resulting minimizer for each MC run was

considered the solution for the current data set.

Results

The models of coupled equilibria

A symbolic representation of the pictorial two-state equi-

libria in Fig. 1a and d is shown in Fig. 1f. Following the

nomenclature of the MWC model (Monod et al. 1963,

1965), the two states of the equilibrium intrinsic to the apo

protein (Fig. 1a) or the biochemically isolated DH domain

(Fig. 1d) are referred to as the T and R states, corre-

sponding to the square and circle, respectively. The frac-

tional populations for states T and R are p0T and p0R,

respectively. p0T and p0R sum to one. k01 and k02 are two first-

order microscopic rate constants.

A symbolic representation of the pictorial four-state

equilibria from Fig. 1b and e is shown in Fig. 1g. Ligand

binding to states T and R gives states TB and RB, respec-

tively, which can also interconvert. These interactions

produce a closed (as distinct from linear) four-state equi-

librium (Fig. 1b). The model assumes that microscopically

J Biomol NMR (2011) 51:57–70 61

123



the T–R transition and effector binding happen instanta-

neously and that diagonal transitions involving simulta-

neous changes in both processes are too rare to be observed

(Woessner 1961). The fractional populations for states T,

TB, RB, and R are pT, pTB, pRB, and pR, respectively. pT,

pTB, pRB, and pR sum to one. For the unimolecular systems

(Fig. 1e), k1–k8 are eight first-order microscopic rate con-

stants. For the bimolecular systems (Fig. 1b), k3 and k8

contain a term of free effector concentration (Palmer et al.

2001).

Design of a novel data analysis strategy

The first step in curve fitting is to establish a real-valued

target function (TF) based on quantitative relationships

between the data and the adjustable variables (x). In the

absence of noise, the true values of the adjustable variables

(X) is the global minimizer, a point x		 such that

TF x		ð Þ
TF xð Þ

for all x. Random noise modulates the TF such that X is no

longer the global minimizer. More often, X is not even a

local minimizer, a point x	 such that

TF x	ð Þ
TF xð Þ

for all x near x	. In the presence of random noise, the best

one can expect from curve fitting is to find the local mini-

mizer that is the closest to X and use it to approximate X.

Therefore, in the second step of curve fitting, TFs are

minimized to obtain as many local minimizers as possible

using optimization algorithms. The next step is to determine

which one, if any, of the local minimizers obtained is the

solution—i.e., the minimizer closest to X. In the absence of

other orthogonal information, it is often assumed that the

global minimizer is the solution. Whether this assumption

holds depends on the roughness of the target function sur-

face (TFS), which is dictated by the quality and quantity of

the data available and by the complexity of the models.

When the function is complex, there may be many local

minima of comparable TFV, and the global minimizer may

or may not be that closest to X. Since there is no a priori

information about X, it is not justifiable to attribute the

global minimizer, if obtainable, to the solution in scenarios

where the noise-modulated TFS is rough. This is likely the

case in solving the four-state equilibrium. Before attempt-

ing to solve such problems, it is necessary to probe the

roughness of TFS to assess the feasibility of the fitting.

Minima mapping from grids of reduced dimensions:

evaluating the feasibility of solving a four-state system

The four-state model is complicated [(1) and (2)] and the

number of adjustable parameters used for fitting relaxation

dispersion data is large [(3) and (4)]. In any parameter set,

there are 4 kinetic, 3 population, 3n chemical shift (3 for

each spin, the fourth is set at zero since the chemical shift

differences dictate relaxation dispersion), and 2n R0
2 vari-

ables, where n is the number of resonances in fast-to-

intermediate exchange for which CPMG data of high

quality can be obtained. The dimensionality of the system

(d) increases with n. In our benchmark n = 8, corre-

sponding to a total of 24 chemical shift, and 16 R0
2 vari-

ables (Fig. 2). Since it is not practical to perform

unconstrained probing of the roughness of the TFS for

systems of such high dimensionality (d = 47), we devised

a strategy to reduce the dimensionality of the search by

using NMR information that is amenable to experimental

perturbation.

Grid search is a commonly used method to probe and

evaluate the TFS (Thisted 1988; Wen and Hsiao 2007).

This approach involves setting up grids of all adjustable

variables and evaluating the TFV at each grid point. Even

if each parameter were to take only two different values,

with the data here there are c.a. 247 (&1014) grid points

for the TFV calculation. Moreover, there are no intuitive

ways to analyze the calculated TFV due to the high

dimensionality. We designed a data analysis protocol to

overcome these difficulties. First, the grid search dimen-

sion was dramatically reduced by fixing the initial values

for most of the adjustable parameters and only varying

the initial values of a few key adjustable parameters.

Since R0
2 variables are orthogonal to all other variables, it

is easy to fit them (Ishima and Torchia 2005), and each of

them was simply assigned with a reasonable initial guess.

In many four-state systems, one two-state edge can be

isolated by removing domains or by making point muta-

tions that strongly skew one of the two equilibrium pro-

cesses. Alternatively, both equilibria can be modulated

together, generating new variants of the four-state system

with different collections of rates and populations (Li

et al. 2008). Often, chemical shift and relaxation disper-

sion analyses of these modified systems will provide

qualitative estimates of the chemical shifts of each spin in

the different states (Li et al. 2008; Yu et al. 2010). In our

analyses here, initial values of all 24 chemical shifts were

based on our chemical shift perturbation and relaxation

dispersion analyses of a battery of mutant helix-DH pro-

teins (Li et al. 2008). Initial values of all four kexs were

set to be identical and varied between e5.0 (&148.4) s-1

and e8.0 (&2,981) s-1, corresponding to slow and inter-

mediate/fast exchange regimes, respectively. Initial values

of pT and pR were given based on chemical shift (Li et al.

2008) and relaxation dispersion analyses of the helix-DH

protein and its variants, and initial values for pTB

were varied (see ‘‘Materials and Methods’’ for details).

These treatments reduce the dimensionality of the grid
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search to 2,1 one along pTB and the other along the kexs.

We note that all adjustable variables were, and must be,

allowed to change during the actual optimization process;

only the initial values of the adjustable variables at the

start of optimization are fixed here.

A second modification was that instead of calculating

the TFV at each grid point as done in standard grid search

algorithms (Thisted 1988; Wen and Hsiao 2007), a mini-

mum on the TFS was obtained from each grid point via the

Levenberg–Marquardt nonlinear optimization algorithm.

Theoretically, all minima of a TFS can be mapped if the

optimization procedure is carried out from a sufficient

number of well-designed grid points. If the number of

distinct minima is high, it is not feasible to solve the four-

state equilibrium unless further information is incorpo-

rated. This curve fitting strategy, modified from standard

grid-search algorithms, is referred to as target function

minima mapping from grids of reduced dimensions

(M2GRED).

Logarithm of average normalized distance

To sufficiently map minima on the TFS, M2GRED analysis

will generate a large number of minimizers: some of them

are identical and others are distinct from one another.

Relationships among them need to be evaluated to assess

minima map of the TFS. However, these minimizers are

often multi-dimensional vectors, in which there are dif-

ferent types of variables with utterly different absolute

values. Therefore, it is usually not straightforward to assess

the relationship between any pair of minimizers unless they

are identical. To effectively evaluate the TFS, a quantity

termed logarithm of average normalized distance (LAND)

was designed to assess similarities among the multi-

dimensional minimizers:

LANDðM1$ M2Þ

¼ max �1:5; log10

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Pn
i¼1

M1ðiÞ�M2ðiÞð Þ2

M1ðiÞj jþ M2ðiÞj jð Þ2

n

vuuut
0
BBB@

1
CCCA;

ð5Þ

in which M1 and M2 are two minimizers being compared,

i indices are the adjustable variables in the n dimensional

vectors. The LAND is formulated based on the Euclidean

distance between two n-dimensional vectors, M1 and M2,

with two levels of normalization. For each element pair

(M1(i), M2(i)), their squared deviation, (M1(i)-M2(i))2, is

divided by a normalization factor, (|M1(i)| ? |M2(i)|)2,

which is always equal or larger than (M1(i)-M2(i))2. The

normalization enables co-existence of variables of different

amplitudes in the vectors being compared. The sum of the

normalized squared deviations is divided by the dimen-

sionality of the vectors, n. This normalization enables

comparison of vectors of different dimensionalities. The

logarithm calculation is used to improve the sensitivity of

the measure to smaller differences. For m minimizers under

investigation, pair-wise LAND calculation results in an

m 9 m symmetric matrix. The more similar two mini-

mizers are, the smaller the LAND is. To avoid taking the

logarithm of zero on the diagonal, all average normalized

distances below or equal to 10-1.5 are set to 10-1.5, cor-

responding to a LAND value of -1.5. The choice of this

cut-off is arbitrary. Nevertheless, a LAND value of -1.5

roughly corresponds to average 6.3% (= 2 9 10-1.5)

deviation per adjustable parameter. Such deviation is

smaller than experimental deviation levels in many bio-

chemical and biophysical applications. We note that LAND

is designed to evaluate similarities between minimizers and

does not take into account correlations between adjustable

variables.

M2GRED/LAND analysis guide curve fitting

of relaxation dispersion data

The availability of the novel data analysis strategy allows

effective evaluation of the smoothness of the TFS when

different amounts of orthogonal information are incorpo-

rated in curve fitting. M2GRED analysis was first per-

formed on the benchmark relaxation dispersion data for all

adjustable variables of the four-state model and 210 min-

imizers were obtained. Their TFVs range from 284.8 to

357.5 (Fig. 3a). Most of the minima possess distinct TFVs,

indicating that the TFS possesses numerous local minima.

A LAND matrix of a 7-dimensional vector containing 4 kex

and 3 population values is plotted in Fig. 3b, and a LAND

matrix of a 24-dimensional vector containing 24 chemical

shifts is shown in Fig. 3c. LAND values decrease from red

to blue (see color bars in Fig. 3). A blue cluster in the

matrix indicates that the minimizers in it are similar to one

another. As shown in Fig. 3b, c, there are very few blue

clusters in either matrix, confirming that most of the grid

points lead to distinct minima—i.e., the TFS is very rough.

Since previous work on three-state systems showed that

1 Historically, we reduced the grid-search dimension to 2 for two

purposes: (1) to reduce the computation time, and (2) to enable 3-D

dimensional plotting of the minima against the two grid-searched

dimensions for visualization.

With the later advent of LAND plotting (see ‘‘Logarithm of average

normalized distance’’ for details), the limit on grid-search dimension

is not restricted to 2. In principle, initial values of any adjustable

variables including pT and pR can vary across an appropriate range for

better minima mapping of the TFS as long as computation time

allows.
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simple data were not sufficient to define parameters (Kor-

zhnev et al. 2004, 2005, 2006; Neudecker et al. 2006), this

level of roughness is expected after fitting the benchmark

relaxation dispersion data to all adjustable parameters of

the four-state model.

Clearly, orthogonal information is required to solve the

benchmark four-state equilibrium. In many allosteric four-

state systems, at least one edge of the four can be isolated

through biochemical manipulations, to reduce the system to

two states (Fig. 1a, d). For example, in helix-DH, the

intrinsic dynamics in the DH domain can be isolated through

analysis of the isolated DH protein lacking the inhibitory

helix (Li et al., in preparation). This then enables the

adjustable parameters of the isolatable edge to be deter-

mined independently and used as constraints in the four-

state curve fitting. To mimic this in the simulations here, the

kinetic parameter (kex1), the population ratio (pT/pR), and the

chemical shift differences (|XT - XR|) on the T-R edge were

fixed in further curve fitting. As a result, the numbers of

kinetic, population, and chemical shift adjustable variables
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Fig. 3 Curve fitting results of

benchmark CPMG data. Fitting

of the benchmark CPMG data to

all adjustable variables of the

four-state model (a–c), and all

adjustable variables except

those on the T-R edge (d–g).

a TFV values of the 210

minimizers. b and c Logarithms

of average normalized distances

(LAND) plots of 7-dimensional

kinetic/thermodynamic

parameter vectors (b) and of

24-dimensional chemical shift

vectors (c) of all minimizers in

curve fitting without constraints

from the T-R edge. d TFVs of

the 240 minimizers obtained

from curve fitting with

constraints on the adjustable

variables on the T-R edge. e and

f LAND plots of 5-dimensional

kinetic/thermodynamic

parameter vectors (e) and of

16-dimensional chemical shift

vectors (f) of all minimizers in

curve fitting with constraints

from the two-state protein.

g LAND values of the

21-dimension vectors (5 kinetic/

thermodynamic and 16

chemical shift parameters) of all

minimizers against the input

vector. The rankings of

minimizers in all panels are

based on ascending order of

their TFVs. All panels share the

same x axis. d, e, and f share the

y axis with a, b, and c,

respectively
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are reduced from 4, 3, and 24 to 3 (kex2, kex3, kex4), 2 (pTB,

pRB), and 16, respectively.

M2GRED analysis was then carried out on the bench-

mark CPMG data set, and 240 minimizers were obtained

for LAND analysis. TFVs of the minimizers are shown in

Fig. 3d. The LAND matrix of a 5-dimensional kinetic/

population vector and that of a 16-dimensional chemical

shift vector are shown in Fig. 3e and f, respectively. In the

former matrix, there is one major cluster of low TFV (blue;

minimizers 1–150 in Fig. 3e), meaning that the majority of

the minimizers have similar fitted kinetic and thermody-

namic variables. In the chemical shift LAND plot, the low

TFV cluster (minimizers 1–150) diverges into a large one

and some minor ones (Fig. 3f), suggesting that chemical

shifts suffer from greater degeneracy compared with

kinetic and thermodynamic parameters.

To assess the relationship between the minimizers and

the solution—i.e., the one closest to the true solution—the

LAND values between the 21-dimentional vector (con-

taining 3 kinetic, 2 thermodynamic, 16 chemical shift

variables) of all 240 minimizers and that of the input vector

were calculated (Fig. 3g). Minimizers in the large blue

cluster on the chemical shift plot (minimizers 21–137) are

the closest to the input vector (the basin on the curve in

Fig. 3g), indicating that it is, by definition, the solution.

Solution determination using chemical shift constraints

It is important to note that in the chemical shift LAND

matrix there are 20 minimizers that have TFVs (between

294.9 and 295.6) slightly lower than that of the solution

(295.9) (Fig. 3d–f). Thus, the TFV alone is still insufficient

to determine the complete solution for the four-state

equilibria, even with constraints on adjustable variables on

one edge. Since foreknowledge of the solution would be

unavailable in experimental applications, further informa-

tion is needed to pinpoint the solution. To this end, inde-

pendent chemical shift information is available from

HSQC measurements for each spin in both the two-state

systems and the four-state systems. In principle, this

information could be used as constraints in curve fitting.

But this would require knowledge of the relative sign of the

chemical shifts of a spin in all four states. While the rel-

ative sign can be determined for two-state systems

(Skrynnikov et al. 2002), it is challenging to determine for

four-state systems. Therefore, we use the chemical shift

information to identify the solution from the resulting

minimizers instead. For each spin, one can independently

determine the difference between its chemical shift (CSD)

in the two-state system and in the four-state system. If a

minimizer is the solution, its fitted population and chemical

shifts should recapitulate the experimentally measured

CSD. To utilize this information, the CSD was calculated

for each spin using the input populations and chemical

shifts according to (6):

CSD ¼
���ðpTB � XTB þ pT � XT þ pR � XR þ pRB � XRBÞ

� pT � XT þ pR � XR

pT þ pR

���; ð6Þ

to mimic data available from HSQC spectra (CSDHSQC).

CSD was also calculated for each spin using the fitted

populations and chemical shift variables in all minimizers

based on the same equation (CSDCPMG).

If a minimizer approximates the solution closely, the

CSDCPMG value for each spin determined from it will

predict CSDHSQC well—i.e., both the slope and the corre-

lation coefficient (r2) of the linear correlation for all spins

in a minimizer will approach unity. We determined the

CSDCPMG and CSDHSQC values for the eight spins in each

of the 240 minimizers and calculated the slopes and r2 of

the resulting 240 linear correlations (Fig. 4a). A total of

117 minimizers have r2 values greater than 0.94 (vertical

dotted line) (0.947–0.952) and slopes close to unity (hori-

zontal dotted line) (0.945) (inset of Fig. 4a). The 117

minimizers coincide exactly with the large blue cluster of

the chemical shift plot—i.e., the solution (Fig. 3f). The plot

of CSDHSQC versus CSDCPMG of the solution is shown in

Fig. 4b. There are also 20 minimizers that have TFVs

slightly lower than that of the solution (Fig. 3f). The first

four of these minimizers have either r2 less than 0.8 or

slope less than 0.6 and are therefore out of the axis limits of

Fig. 4a. Minimizers 5–20 have r2 between 0.857 and 0.866,

and slope between 0.908 and 0.918 (red dotted circle in

Fig. 4a), and are clearly distinguishable from the cluster

corresponding to the solution. These results collectively

suggest that CSD analysis in conjunction with the TFV is

sufficient to identify the solution from all minimizers

obtained for the benchmark parameter set.

The kinetic and thermodynamic parameters in the

solution are shown together with their input values in

Table 1. Among the five adjustable kinetic and thermo-

dynamic variables, kex3 and pTB are accurately (close to

their input values) and precisely (small uncertainties)

determined; kex2 is determined with less accuracy, while

kex4 and pRB are determined with less precision. Monte

Carlo (MC) simulation was used to assess which adjustable

parameters can be faithfully fitted and which cannot in the

presence of random noise. In each simulation, 4% random

noise was incorporated into the noise-free benchmark data

set. Ideally M2GRED/LAND analysis should be employed

to find the solution for each data set. However, this is

extremely time-consuming for a large number of simula-

tions. Instead, the minimizer obtained from the input

parameter vector as the initial guess was assumed to be the

solution. A total of 1,000 MC simulations were carried out.
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The means and standard deviations of fitted kinetic/ther-

modynamic variables are shown in Table 1. Among them,

kex3 and pTB are accurately and precisely determined as

they contribute significantly to relaxation dispersion, kex2

and pRB are reasonably defined, and kex4 is poorly deter-

mined presumably due to its marginal contribution to

relaxation owing to the low-populated R-RB edge

(pR = 0.03, pRB = 0.05). Nevertheless, the MC simulation

results are statistically indistinguishable from the solution

(Table 1).

In summary, when combined with relaxation dispersion

data acquired at two fields, CSD information and con-

straints of variables on one edge are sufficient to determine

the solution of the benchmark four-state equilibrium in the

presence of experimentally reasonable noise. We note that

chemical shift analysis for slow exchange scenarios can

help identify solutions for chemical shifts but not for

population values since chemical shifts do not provide

thermodynamic information in this exchange regime. This

information can in principle be extracted from relative peak

volumes. However, due to line broadening and/or popula-

tion bias, it is often difficult to rely on these measurements

for extraction of thermodynamic information. Further

analyses are necessary to assess the value of independent

chemical shift information in identifying the solution of a

four-state equilibrium in slow exchange.

Improvement in fitted parameters by additional

measurements

It is instructive to assess how different types of additional

data affect the quality of the fitting, as a guide to experi-

mental design. We compared the benefits of repeating the

measurements at 600 and 800 MHz to those of adding

900 MHz data to the benchmark. In the former case, the

adjustable parameters remain unchanged. In the latter,

there are 8 additional R2
0 values due to the introduction of a

new field. The two new data sets were subjected to 1,000

MC simulations at a 4% noise level. In both cases the

incorporation of additional data modestly improved both

the accuracy and the precision of fitted kinetic and ther-

modynamic variables (data not shown). The two already

well-determined kinetic parameters, kex2 and kex3, show the

largest relative improvement. For example, the standard

deviation of kex2 decreases more than 60% when 900 MHz

data are incorporated. The two most poorly determined

parameters, kex4 and pRB, only show slight improvement in

their precision upon both treatments. Overall, incorporation

of 900-MHz data is somewhat superior to repeating mea-

surements at the two lower fields since this information

gives larger improvements of precision in 4 out of 5

kinetic/thermodynamic variables.
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Fig. 4 Determining the solution using chemical shift differences.

a Plot of the slopes and the correlation coefficients (r2) of the linear

correlations of chemical shift perturbations calculated from the

minimizers (CSDCPMG) with chemical shift perturbations obtained

from the input parameters (CSDHSQC). A total of 56 points, including

minimizers 1–4 in Fig. 3g, have either r2 less than 0.8 or slope less

than 0.6 and are therefore out of the axis limits and not shown. The

data points for minimizers 5–20 in Fig. 3g are within the dotted red
circle. The dotted vertical line marks 0.94 on the x axis, and the

dotted horizontal line marks the unit on the y axis. There are 117 data

points, corresponding to minimizers 21–137 in Fig. 3g, with r2 larger

than 0.94, shown in the inset of a. b The plot of CSDCPMG from the

solution (minimizers 21–137) versus CSDHSQC

Table 1 Summary of the Solution

Inputa Solutionb MC simulationc

kex2
d 6.5 6.0 ± 0.3 6.3 ± 0.5

kex3
d 6.5 6.7 ± 0.2 6.4 ± 0.5

kex4
d 6.5 6.8 ± 0.9 6.5 ± 1.8

pTB 0.85 0.84 ± 0.01 0.84 ± 0.02

pRB 0.05 0.043 ± 0.017 0.059 ± 0.023

a Values used for data generation
b Values and their uncertainties of the solution
c Means and SD of the fitted parameters from MC simulation
d Values for kex2–kex4 are natural logarithms of values in s-1

66 J Biomol NMR (2011) 51:57–70

123



MC simulation on all parameter sets

In order to more comprehensively survey the parameter

space in which it is feasible to solve a four-state equilib-

rium, we tested the fitting for all 624 parameter sets

described in ‘‘The parameter sets’’ using MC simulation

analysis. For each parameter set, we added 4% noise to

synthetic 600- and 800-MHz CPMG data and carried out

one hundred MC simulations. In each case, kex1 and the pT/

pR ratio were fixed; fitting was initiated with the starting

parameter set and the resulting minimizer is assumed to be

the solution based on previous observation (data not

shown). The means and standard deviations of the nor-

malized fitted kinetic and thermodynamic variables (kex2,

kex4, kex3, pTB, and pRB) are shown in Figs. 5 and 6. Using

normalized values one can readily assess the accuracy

(deviation of the normalized mean from 1) and precision

(size of the normalized standard deviation) of the fitting

across a large range of absolute values. For each adjustable

variable, we plotted fitted values from all 624 parameter

sets sequentially organized as described as follows: within

each 13-column colored sector, all the input values remain

constant except for input pR (pT) values which decrease

(increase) from left to right, following the order in Fig. 2e;

different colors represent different input pTB (pRB) values,

which decrease (increase) from red to blue sectors as in

Fig. 2d; each of the tri-colored (red, green, blue) super-

sectors are each composed of a total of 39 columns, and

correspond to a unique set of input kex1, kex2, kex3, and kex4

values and are sequentially organized following the order

(from top to bottom) in Fig. 2c.

In curve fitting, a variable can only be well defined if it

contributes significantly to the measurements. As shown in

Figs. 5a and 6a, kex2 is reasonably determined in the later

part of each colored sector, corresponding to conditions

where pT is higher, and the T-TB edge thus makes a larger
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Fig. 5 Fitted kinetic and

thermodynamic variables. Fitted

kex2 (a), kex4 (b), kex3 (c), pTB

(d), and pRB (e) are shown for

all 624 parameter sets. Each

parameter is normalized to its

input value. The error bars are

the SD of the normalized fitted

parameters. In each panel, there

are 16 red, 16 green, and 16

blue sectors, and the color of

each sector codes for (pTB, pRB)

as in Fig. 2d. Each of the 48 (16

red ? 16 green ? 16 blue)

sectors contains 13 individual

bars. The 13 bars sequentially

correspond to 13 (pT, pR) in

Fig. 2e. The horizontal

sequence from left to right of 16

sectors of common color codes

for the vertical sequence from

top to bottom of the kinetic

parameter combinations in

Fig. 2c. There are a total of 624

individual bars in each panel,
corresponding to the 624

kinetic/thermodynamic

parameter sets
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contributions to relaxation. In contrast, Figs. 5b and 6b

show that kex4 is reasonably determined in the early part of

each of the colored sectors. In these parameter sets, pR is

higher, resulting in larger contributions to relaxation from

the R-RB edge. Owing to the opposite responses to alter-

ations in pT/pR, there is a negative correlation between the

certainty of kex2 and kex4 (compare Figs. 5a–b, 6a–b). Both

the accuracy and precision of the fitted kex3 are reduced

when (pTB, pRB) = (0.88, 0.02) and pT is high as shown in

9th, 11th, 13th, and 15th red sectors (parameter sets

313–325, 391–403, 469–481, 547–559, respectively) in

Fig. 5c. This is because, as pRB becomes small and pT

becomes high, the T-TB edge replaces the TB-RB edge as

the relaxation-dominating edge. kex3 is very well deter-

mined when the TB-RB edge is less skewed—i.e., (pTB,

pRB) = (0.85, 0.05) or (0.8, 0.1) (green and blue sectors in

Figs. 5c and 6c)—as the edge dominates relaxation in these

cases. In principle, an edge can become relaxation-domi-

nating if its kex value switches from the fast to intermediate

exchange regime. However, there are no such examples in

the current parameter sets.

As far as adjustable population variables are concerned,

pTB is very well determined since it is the major species

and always on edges that contribute to relaxation signifi-

cantly (Figs. 5d and 6d); pRB is better determined if the

TB-RB edge is less skewed [blue sectors of Fig. 5e, (pTB,

pRB) = (0.8, 0.1)], and it tends to be over-estimated if the

TB-RB edge is severely skewed [red sectors of Fig. 5e,

(pTB, pRB) = (0.88, 0.02)]. Therefore, the ratio of pTB/pRB

tends to be accurately estimated when the TB-RB edge is

less skewed, and underestimated when the TB-RB edge is

severely skewed.

In principle there are two ways to calculate the coupling

between the equilibria in the four-state box: (pT/pTB)/(pR/

pRB) or (pT/pR)/(pTB/pRB). However, since the ratio, pT/pR,

is determined in our approach through a biochemically-

created two-state system, it can be quantified most accu-

rately. This speaks to calculating coupling through the

latter measure. From the analysis in the preceding para-

graph, the ratio (pT/pR)/(pTB/pRB) can be most accurately

determined when the TB-RB edge is less skewed, but will

have systematic deviations if the TB-RB edge is severely

skewed. Nevertheless, the systematic deviation may be

especially significant for signaling proteins, in which the

coupling strengths tend to be small, ranging from a several-

fold to tens of folds (Hantschel et al. 2003; Lietha et al.

2007; Moarefi et al. 1997; Pluskey et al. 1995; Yohe et al.

2008; Yu et al. 2010).

Discussion

Coupled equilibria play important roles in controlling

information flow in biochemical systems. The most rep-

resentative class of such systems is allosteric proteins,

which have been found in most biological pathways

(Gunasekaran et al. 2004; Tzeng and Kalodimos 2011).

Allosteric proteins in their apo form possess intrinsic

dynamic equilibria (Fig. 1a), often between low activity

and high activity states (Kern and Zuiderweg 2003; Monod

et al. 1965). Effectors control the activities of allosteric

proteins by modulating this intrinsic equilibrium upon

binding to remote sites (Bosco et al. 2010; Buck et al.

2004; Leung and Rosen 2005; Li et al. 2008). Coupling

between the intrinsic equilibrium and the effector binding

equilibrium is the essence of regulation in allosteric pro-

teins (Bosco et al. 2010; Buck et al. 2004; Leung and

Rosen 2005; Li et al. 2008).

It is increasingly appreciated that coupled equilibria are

also prevalent in complex, multi-domain proteins and play

critical role in the regulation of this class of molecules

(Faraldo-Gomez and Roux 2007; Levinson et al. 2006;
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Fig. 6 Fitted kinetic and thermodynamic parameters. For clarity,

fitted kex2 (a), kex4 (b), kex3 (c), pTB (d), and pRB (e) of the first 39

parameter sets in Fig. 5 are shown. The three wedges above a show

ascending order of the ratios between pT to pR in each color sector

(see Fig. 2e for details)
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Masterson et al. 2008; Sondermann et al. 2004; Vogtherr

et al. 2006; Yohe et al. 2008; Young et al. 2001; Yu et al.

2010). There, activity often appears to be controlled by a

series of equilibria involving binding interactions between

distinct modular elements. Thermodynamic coupling

between these interactions enables activity (enzymatic and/

or binding to other molecules) to be strongly suppressed,

even though the individual equilibria may not be strongly

biased. For example, we recently demonstrated that in the

multidomain signaling protein Vav1, the intramolecular

binding of an autoinhibitory helix into the enzymatic active

site of the protein occurs with an equilibrium constant of

*10. But this equilibrium is shifted tenfold further toward

the bound state by additional contacts between the CH and

PH domains of the molecule (Li et al. 2008; Yu et al.

2010). Thus, the helix-active site and CH–PH equilibria are

coupled tenfold, and together provide strong (100-fold)

suppression of enzymatic activity. It is the coupling

between the two equilibria that enables one process to

communicate with the other.

Deciphering coupling strengths is pivotal in fully

understanding the regulation of allosteric proteins and

other multi-domain proteins. Previously, we use NMR

spectroscopic analysis of the different biochemical entities

(mutant, truncated, or other biochemically modified pro-

teins) to directly dissect complicated thermodynamic

equilibria and quantify coupling strengths among multiple

equilibria (Li et al. 2008; Yu et al. 2010). This work relied

on chemical shift measurements to quantify populations of

states, in order to bypass the difficulties inherent in analysis

of relaxation dispersion in complex systems. Here we

demonstrate that an approach based on relaxation disper-

sion measurements can complement these methods and

extend determination of coupling strengths to many sys-

tems in signal transduction pathways. In addition to mea-

suring populations, the relaxation dispersion approach can

also provide information on rates of interconversion

between states, data not available in purely chemical shift

based approaches. Our analyses relied on a novel data

analysis strategy, called M2GRED/LAND, to probe the

smoothness of the TFS with different amounts of orthog-

onal information used in fitting CPMG data to the four-

state model (Fig. 1g). In multi-domain systems, one edge

of the four-state thermodynamic box can generally be

isolated by removing domains or by making point muta-

tions that strongly perturb certain equilibria, as demon-

strated in a recent study (Li et al. 2008). The

biochemically/genetically isolated edge becomes a two-

state system amendable to routine relaxation dispersion

analysis. Information acquired from the two-state system

enables constraints on a quarter of the adjustable variables

of the four-state model. M2GRED/LAND analysis suggests

that incorporation of the information from the two-state

system, indeed, dramatically reduces the roughness of TFS.

Further NMR spectroscopic analysis of the different bio-

chemical entities offer orthogonal chemical shift informa-

tion to facilitate solution of four-state equilibria (Li et al.

2008; Yu et al. 2010).
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